

Der Energieträger Wasserstoff

Farbenlehre | Umwandlungstechnologien | Nutzungspfade | Mögliche Projekte in Neustadt

Stand der Technik

Nutzungspfade

Wirtschaftlichkeit

Wasserstoff - Eine Farbenlehre

Schwarzer Wasserstof

Primärenergie: Kohle/Erdöl

Umwandlung: Reformierung

CO₂-Emission: Sehr hoch

Grauer Wasserstof

Primärenergie: Erdgas/Graustrom

Umwandlung: Reformierung/ Elektrolyse

CO₂-Emission: hoch

Blauer Wasserstof

Primärenergie: Erdgas mit CCS

Umwandlung: Dampf-Reformierung

CO₂-Emission: mittel

Türkiser Wasserstof

Primärenergie: Erdgas durch Spaltung von Methan

> **Umwandlung:** Pyrolyse

CO₂-Emission: Mittel bis gering

Grüner Wasserstof

Primärenergie: Erneuerbare Energien

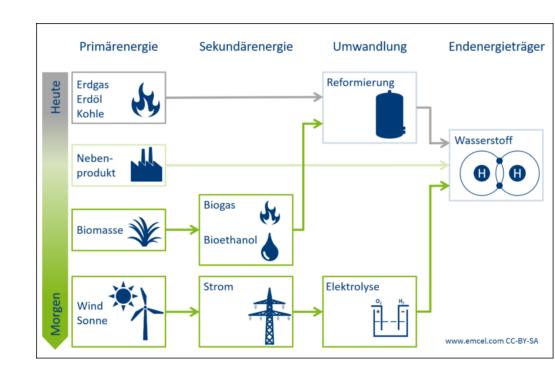
Umwandlung:

CO₂-Emission:

Orangener Wassersto

Biomasse oder mit

CO₂-Emission:



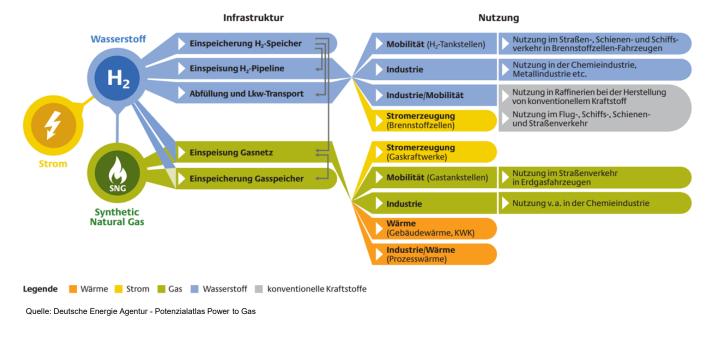
¹ https://www.zfk.de/politik/deutschland/bundestag-empfiehlt-orangen-wasserstoff

Wasserstoff – Stand der Technik

- Für eine neutrale CO₂-Bilanz von Wasserstoffanwendungen ist eine nachhaltige Wasserstoffproduktion entscheidend
- Derzeit wird Wasserstoff in Deutschland zu über 90% aus fossilen Energieträgern hergestellt
- Das größte Zukunftspotenzial bietet die Elektrolyse aus erneuerbaren Energien wie Wind und Sonne (Power-to-Gas)
- Dazu muss eine entsprechende Infrastruktur mit Speichermöglichkeiten aufgebaut werden
- Um die stark wachsende Wasserstoffnachfrage decken zu können, wird ein Großteil des grünen Wasserstoffs importiert werden müssen

Stand der Technik

Nutzungspfade

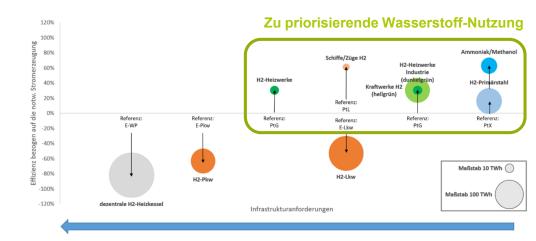

Wirtschaftlichkeit

Nutzungspfade von Wasserstoff

Wasserstoff ist ein wichtiger Energieträger für

- Die Energiewirtschaft
- Die Industrie
- Den Verkehrssektor
- Den Wärmesektor

Wasserstoff in der Energiewirtschaft

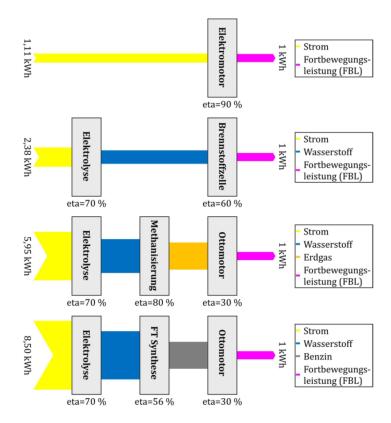

Das zukünftige Energiesystemen ist von fluktuierenden, nicht regelbaren Erneuerbaren Energien geprägt. Erzeugung und Verbrauch von Strom müssen durch Energiespeicher zunehmend entkoppelt werden.

- Wasserstoff als Speichermedium kann bspw. in Salzkavernen mit sehr geringen Speicherverlusten und langfristig gespeichert werden
- So ist auch ein saisonaler Ausgleich möglich
- Ausreichend große Energiemengen für die Überbrückung der sog. kalten Dunkelflaute speicherbar
- Rückverstromung möglich, z.B. in
 - Gaskraftwerken
 - BHKW
 - Brennstoffzellen
- Einspeisung ins Gasnetz zur Substitution von fossilem Erdgas

Wasserstoff in der Industrie

- Wasserstoff ist ein wichtiger Rohstoff für industrielle Produktionsprozesse
 - Stahlindustrie
 - Chemische Industrie
 - Petrochemische Industrie / Raffinerien
- Derzeit wird der benötigte Wasserstoff zum Großteil aus fossilen Quellen gewonnen
- Ersatz von fossilen Brennstoffen zur Erzeugung von Hochtemperaturwärme
- Die industrielle Verwendung von grünem Wasserstoff stellt einen der effizientesten Nutzungspfade dar

Quelle: Fraunhofer IEE: Wasserstoff im zukünftigen Energiesystem: Fokus Gebäudewärme. Studie zum Einsatz von H2 im zukünftigen Energiesystem unter besonderer Berücksichtigung der Gebäudewärmeversorgung, 2020

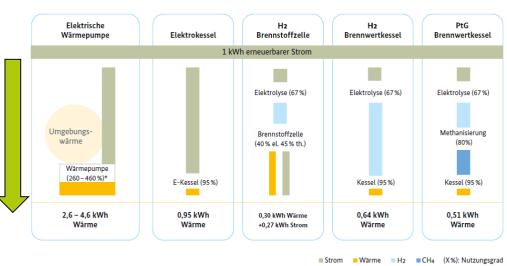


Wasserstoff im Verkehr

- Neben den batterieelektrischen Fahrzeugen bildet Wasserstoff die Grundlage für alternative klimaneutralen Antriebskonzepte
- Synthetische Kraftstoffe können durch Methanisierung und Fischer-Tropsch-Synthese aus Wasserstoff produziert werden

Der Einsatz von Wasserstoff im Verkehrssektor eignet sich insbesondere dort, wo ein direktelektrischer Antrieb schwer realisierbar ist

- Güterverkehr
- Schiffsverkehr
- Busverkehr (Demonstrationsprojekt Hamburg)
- Zugverkehr (Bremervörde-Cuxhaven-Bremen)


Quelle: Tödter, Hendrik: Einfluss der Entwicklung im Mobilitätssektor auf Energiesysteme mit hoher fluktuierender Einspeisung, Cuvillier Verlag, 2021

Wasserstoff im Wärmesektor

- Im Gebäudesektor ist die Nutzung einer elektrischen Wärmepumpe deutlich effizienter (aus 1 kWh EE-Strom werden bis zu 4,6 kWh EE-Wärme)
- In vielen Szenarien beträgt der Anteil von Wärmepumpen in der Gebäudeversorgung im Jahr 2050 deutlich über 70%
- In der Fernwärme werden ab ca. 2030 erste Gas-Heizkraftwerke durch wasserstoffgefeuerte KWK-Anlagen ersetzt
- Bis 2050 decken Heizwerke und Heizkraftwerke mit Wasserstoff etwa ¼ der Fernwärmeerzeugung (kalte Perioden mit geringer Windstromeinspeisung)

Quelle: Prognos, Öko-Institut, Wuppertal Institut: Klimaneutrales Deutschland 2050

Quelle: Agora Energiewende (2020), PwC (2020), Fraunhofer ISE(2020). *Abhängig von Gebäude, Wärmequelle und Heizungstemperatur.

Stand der Technik

Nutzungspfade

Wirtschaftlichkeit

Herstellungskosten von grünem Wasserstoff

Derzeit ist nachhaltig produzierter, grüner Wasserstoff etwa um den Faktor 3-10 teurer als Erdgas¹

¹ Durchschnittlicher Gaspreis Gewerbe 2020: ca. 4,5Ct/kWh Durchschnittlicher Gaspreis Industrie 2020: ca. 2,5 Ct/kWh

Es besteht ein Kostenreduktionspotenzial:

- Technische Lernraten
- Skaleneffekte
- Automatisierte Fertigung

Wasserstoff sollte aus Effizienzgründen und Kostengründen dort eingesetzt werden, wo nachhaltige Alternativen fehlen

Quelle	Preis für grünen Wasserstoff			2020 zu 2050	Preisdefinition
	2019-2022	2030	2050	-%	
Agora¹	24 Ct/kWh	19 Ct/kWh	13 Ct/kWh	-53%	Endprodukt ohne Netzentgelte und Vertriebskosten
Greenpeace Energy ²	16,5 Ct/kWh	12 Ct/kWh	9 Ct/kWh	-54%	Produktionskosten
Prognos AG ³	21 Ct/kWh	18 Ct/kWh	14 Ct/kWh	-65%	Bereitstellungskosten beim Endverbraucher

^[2] Deutscher Bundestag (2020): Kosten der Produktion von grünem Wasserstoff

^[3] Deutscher Bundestag (2020): Kosten der Produktion von grünem Wasserstoff

Stand der Technik

Nutzungspfade

Wirtschaftlichkeit

Mögliche Anwendungsfälle in Neustadt

Die SWNH stehen als Partner zur Verfügung:

- Unterstützung von regionalen Wasserstoffprojekten
 - Projekt SH9: Treibstoff der Zukunft 100% grüner Wasserstoff (<u>www.egoh.de</u>)
 - Projekt SH10: Wasserstoffstrategie Zweckverband Ostholstein -Erzeugungs- und Nutzungsoptionen in einer Hand (www.zvo.com)
- Umstellung auf wasserstoffbasierte Betriebsfahrzeuge ("Wasserstoffflotte")
 - Wasserstofferzeugung am Müllheizkraftwerk Neustadt (orangener Wasserstoff)
 - Wasserstofferzeugung aus Windstrom-Elektrolyse
- Abwärmenutzung in Nahwärmenetzen
 - Abwärme Elektrolyseur
 - Abwärme wasserstoffgefeuerter BHKWs
- Aufnahme von methanisiertem Wasserstoff ins Erdgasnetz

Übersicht Wasserstoffprojekte im Norden:

https://www.ihk-nord.de/produktmarken/schwerpunkte/energiepolitik-industriepolitik/wasserstoff-landkarte-2020-4946362

Quelle: IHK Nord